Social Media

Thursday, October 31, 2019

Battery Arrangement and Power

Based on the applications,the arrangement of cells taking place.They are two ways.
1. serial arrangement-To increase the voltage
2. parallel arrangement-To increase the current

1.Parallel Arrangement
The four batteries in parallel in the upper diagram produces the voltage in one cell and they will supply the current four times of it.Current is the rate at which electric charge passes through a circuit, and is measured in amperes. Batteries are rated in amp-hours, or, in the case of smaller household batteries, milliamp-hours (mAH). A typical household cell rated at 500 milliamp-hours should be able to supply 500 milliamps of current to the load for one hour. You can slice and dice the milliamp-hour rating in lots of different ways. A 500 milliamp-hour battery could also produce 5 milliamps for 100 hours, 10 milliamps for 50 hours, or, theoretically, 1,000 milliamps for 30 minutes. Generally speaking, batteries with higher amp-hour ratings have greater capacities.
2.Serial Arrangement
The four batteries in series in the upper diagram produces the current in one cell and they will supply the voltage four times of it.Voltage is a measure of energy per unit charge and is measured in volts. In a battery, voltage determines how strongly electrons are pushed through a circuit, much like pressure determines how strongly water is pushed through a hose. Most AAA, AA, C and D batteries are around 1.5 volts.
Imagine the batteries shown in the diagram are rated at 1.5 volts and 500 milliamp-hours. The four batteries in parallel arrangement will produce 1.5 volts at 2,000 milliamp-hours. The four batteries arranged in a series will produce 6 volts at 500 milliamp-hours

A quicktour on breadboard



Bread Board is a great tool to design and test your circuits. You do not need to solder wires and components to make a circuit while using a bread board. It is easier to mount components & reuse them. Since, components are not soldered you can change your circuit design at any point without any hassle.

Structure of a Bread Board: Basically, a bread board is an array of conductive metal clips encased in a box made of white ABS plastic, where each clip is insulated with another clips. There are a number of holes on the plastic box, arranged in a particular fashion. A typical bread board layout consists of two types of region also called strips. Bus strips and socket strips. Bus strips are usually used to provide power supply to the circuit. It consists of two columns, one for power voltage and other for ground.
Socket strips are used to hold most of the components in a circuit. Generally it consists of two sections each with 5 rows and 64 columns. Every column is electrically connected from inside

                                           
         

The breadboard above is a single panel with two attached "bus strips." The second picture gives a little more detail. The green lines represent the internal connections of the breadboard. The bus strips on this breadboard are labeled + and - and are used for power. They run the length of the breadboard. Also, notice that the way that they are arranged, the inside edges of each bus strip is opposite polarity. This really helps when working with standard logic and most other ICs.The middle area is the component area, and this is where you will work your electronic magic.

The lifeline for a data-driven world



What is IoT?

Internet of Things (IoT) is an ecosystem of connected physical objects that are accessible through the internet. The ‘thing’ in IoT could be a person with a heart monitor or an automobile with built-in-sensors, i.e. objects that have been assigned an IP address and have the ability to collect and transfer data over a network without manual assistance or intervention. The embedded technology in the objects helps them to interact with internal states or the external environment, which in turn affects the decisions taken.

Why IoT?

An article by Ashton published in the RFID Journal in 1999 said, “If we had computers that knew everything there was to know about things - using data they gathered without any help from us - we would be able to track and count everything, and greatly reduce waste, loss and cost. We would know when things needed replacing, repairing or recalling, and whether they were fresh or past their best. We need to empower computers with their own means of gathering information, so they can see, hear and smell the world for themselves, in all its random glory.” This is precisely what IoT platforms does for us. It enables devices/objects to observe, identify and understand a situation or the surroundings without being dependent on human help.

What is the scope of IoT?

Internet of Things can connect devices embedded in various systems to the internet. When devices/objects can represent themselves digitally, they can be controlled from anywhere. The connectivity then helps us capture more data from more places, ensuring more ways of increasing efficiency and improving safety and IoT security.
IoT is a transformational force that can help companies improve performance through IoT analytics and IoT Security to deliver better results. Businesses in the utilities, oil & gas, insurance, manufacturing, transportation, infrastructure and retail sectors can reap the benefits of IoT by making more informed decisions, aided by the torrent of interactional and transactional data at their disposal.

How can IoT help?

IoT platforms can help organizations reduce cost through improved process efficiency, asset utilization and productivity. With improved tracking of devices/objects using sensors and connectivity, they can benefit from real-time insights and analytics, which would help them make smarter decisions. The growth and convergence of data, processes and things on the internet would make such connections more relevant and important, creating more opportunities for people, businesses and industries.




What is the difference between Microcontroller and Microprocessor? A commonly asked question!

                 

Lighting Deal

Recent Post